g T MAY(CNN) W CHgt Hald Ro| g

O L.

Hanjin Cho

= o AR . . . .
2 Prmg® 2, Electronic & Electrical Convergence Engineering
1=y b 5:, Hongik University
ol LI !

.DTS‘.{:; -z &/ Republic of Korea
HiNgw ©




l'_ HONGIK
UNIVERSITY

o <0
~ [
IR
Z Z
Z Z
S
20 &0
RO RO
< =
HO1 M1
%0 %0
jol ol

F

0]

 ARE HHOMLICNN S8 =



ghda 3NN 71 UNIVERSITY

stA|et =M. MLPO|A] CNN2 B2

H
. BB, QI7¢0| A|ZH A|AES O|D|X|Q AT PUHEE, receptive field) O M S-S 53,

+ CNN:2 O[qfot 40| SH S BOL 24 =8 wAlet i S8 2 F=ot=5 27 E.

o
aro
o IUAME § ., ¢
>
@
) c < > ‘55 c
] o o 2 = c o
E =g - o .8 2 e <
- ° o £ 5 o
o o 2 o 6 = Q
3 8 2 = S 5 3
[ w -5 9 > [¥]
L o & - 3 3 o o o
@ c v %o o S 2 3 ° [ ®
£ 5 S EE " £t 0 & w— <4t —
& 2 g 8 &L o o o § [ o
ce€3f g3 558 o o .
ev o p2 St s 2 3 3
@ bl = o 9 5 T o O
v uw OSu o Qo o =
0o 5% SE @ L = 2
88:8 ‘5_8 33 = 2
Al O] 2 = o
I U
L —
w
we 'y | 1]
)
- st
@
~ £
‘o
» ® g
=)
L
°
x
o)
5
Q




ghda 3NN 71 UNIVERSITY

» g MACNN) 0] 2H?
. CNN2 , AlZtE O|0|E{ 2 N2|ste o 2| XstE By 21X,

=3
-1 s 1 - o —
- HOlEHe St F =& At stgd = ARS 242,

- 2t & B(Convolutional Layer), 2 & (Pooling Layer), 27 3Z & (Fully Connected Layer).
o

=]
- MLPECIXME OiZl0|E =2 880l 50| 753

C3: 1. maps 16@10x10
C1: feature maps 54: f. maps 16@5x5

INPUT
32%32 6@28x28

|
| Full conrlection Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

LeNet

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” Proceedings of the IEEES6.11 (1998): 2278-2324.
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o | 3 - 1000
A 128 Max | _| |
Grad [ | pooing % 258
Uof 4 pooling pooling

3 T - Krizheveky, Alex, llya Sutskever, and Geaffrey E. Hinton. "Imagenet classification with deep
AlexNet :II'—L convolutional neural networks.” Advances in neural information processing systems 25 (2012).
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ol X G Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-
VGG16 28 #= VGG 2 '_llg scaleimage recognition.” arXiv preprint arXiv: 1409.1556 (2014).
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« Microsoft ResearchOf| Al K| 2t5t Residual Network.
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- Autoencoder.

- Variational Autoencoder (VAE).

- Generative Adversarial Network (GAN).
- Diffusion 2 &.

- Transformer 7|EF 2 & S

ChQEst O| O] K|.EI A E

MidJourney V5

All new features
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- BERT (Bidirectional Encoder Representations from Transformers).

- GPT (Generative Pre-trained Transformer).

- HuggingFace Transformers 2}0| E.2{2].
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