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H412{'d (Machine Learning)
HAIZQl 72| 20| LIO|HE 7[HIe = HFE 7t &H&51 1, HI0|E{o| A THEIS Ao} O|E HIFCE FE5L= 7|

£2{d (Deep Learning)
QIZto| k| MHUS DUSI0| CIO|E E ABH O SH&6HH IES FES S+ UATEsH=7|a

MAMS Al (Generative Al)
AtExte| EX Q410 w2t ZotE MMliLi= 218 Xls 7=

VAE [ GAN | LLM

¥ QEQITTZ, HOJElS) 2S Hoifs| 44 MYoR, £ UlEY Ch =2 210f 2 J0jsin, Xiof
$EE 8150 M2 HOIES 44 27} M2 2siof Ol0[XIS Bl He| 2 450 28
Chyot BIOIESS 44

HONGIK
UNIVERSITY




l'_ HONGIK
UNIVERSITY

Ol 7| &

L
o

S|

ol

. C{AR{HO)N

ofru

il

|
F

I

Sof FA{o|Lf

=2 HolHZ
2 SOl A

F

—_
o
=

=
=

DA o3 &0l LIRE

O 2SXs

= ut

40| &

=
—

o]
YN

AL
T

ujn

Do o2t &

oj2jo| Hjo|E{o] BN E &2 oS

=
—

— A —
- S5l =87

o1

K



l'_ HONGIK
UNIVERSITY

Ol 7| &

L
o

S|

KO
=
{|0

jor

HEel: &

=
L

P A0 HOJHE =2 g

O —t
25k

HIAE O|0[X|, MM S Ct

HolE =X

%0
wm_u
jol
Kl

M_u
ol

SL =
2 s

X-”) _E_&Ilj E

~
o

HlOJE] Xz

100

FEHOIE S = Heta

i

HO|HE Sah I BH= otaot

100

KIr

7t HIAE H{O[H & At

ol 1o
2 g

m

« HR M otoH Ittt H 7, HO|H

= 2AEE K[ E.

Z

2 A Hlo[& 0| HE5H0 = A of



lSX|s9

\J

l'_ HONGIK
H R UNIVERSITY

: AR B 9

« X|&=St& (Supervised Learning) : D EO| = HIO|HE 7|22 2 ot

(ol olO| X 257, 74 Ol 5.

o H|X| = Sh& (Unsupervised Learning) : ‘S & §10| HO|H Q| &L I H Z 5.

(O E212HE, AHa =2

o X}Z|1X|=8h& (Self-supervised Learning) : 25 QEE 7| &2 2 LIHX| & 0| &.
O) EMAZD A ZRH AHSHE 5.
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o2 F2 80 ¥

E Y E‘|§1'(Dataset)
- Hal2ld 22 50 AtE%t= HO|H 23
- 23 H|O|H M(Training Dataset): £ 2 2 o5 A|7|= O| AFHE 5= H|O| H.
- "7t O] E{ Ml (Test Dataset): St5 &l 22| d5& B7t5t= Ol AHE 5= HIO| &,
« £ /d(Feature)

2= HOlHOM wolOjet §E S LIEtH = £d E= B

clojef A
. E1|0|%(Label) , : 1
=] x5 L X{Ct7} g%
- Xk sts0 Z=2O| o =5l 0f ot= HE L.
79 Hiss o Lto| &k 24 a3
A 3 male 22 1 7.25
B 1 fernale 38 1 71.2833
c 3 ferale 26 0 7.925
25 A ME HEHE 7 0| &, LIHX|= SdL2 2FE.
D 1 female 35 1 53.1
A 3 male S5 0 8.05
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o 0| =2k (Predicted Value)
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= El2{Yd(Deep Learning) O| &t?

o
- HEldz 2

- OS2+

- O|O]X], 54,

I

M8 A (Artificial Neural Networks)= 7|9t = S&ot Iff H 2 QA St= 7|=.
HElMEdY A2 Z Soff HE Y HO|HE 2882 &4
XA Mo O des= EY.
7 E(Neuron)O| HA K0 F(Layer)= T3¢
HEXHQ Hilz{dnt ga{del vl

« AES HNE

o2 s HEAQI 0j2I2{d (Traditional Machine Learning) g2i{d (Deep Learning)
ol HUER 7V Sh= CHRLEC| Al 2H MM 7|Y. YVO2 BX ZE2 £8C  CIAT 3 X0 Q18 MAYE OIS A2 AIBSI0 HIOJE| £2 &, T Ol 2t
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L k- Tre|® Boh +522 CIOIE0IA SR8 §H(H4)E 58 DHO| AAZ CO[EHE BASID, BT XISO2 FFY
32X Y| ZICHst o|Yn2|E (0f: SJALEAE E2), SYM, KNN) ChE Q12 AAUS §St BT X0 Y025 AR
2 s3Y AUHO R Chadt UNRIBR MR 28 S Jfo| FRICE PAE of SEITH MAU AR
23X iR X2 HFW XN U 8% GPU X %2 HEY X0 238
MMM AP0 20| H AP $HA0] JHsE AR E FHIXQI A0 7Hs B, MALY XL BESI0] 2 $§4{0] oA R
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M= MATDNN)Q| 7H 2 (g NG

= (I)J_CTIJ_IA_|7C§I:II- IIZ_E -|A-IIEE(AND_I?__I-")

o - H—
- TS oM E Z(Single Layer Perceptron)= Y HB I =8B 2 {Ld =,
- Y 22| Vst =X E Vs,
« ANDAIOIEXNE HMOE F A E LtE = U= BT & 7ts.
HIOIE{MIE Ul E0xoh= 24
AND Gate
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0o 0 o _ L.25¢
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AS MATDNN)L 72 Iy

= QI Z MAY . CHE o E E(Multilayer Perceptron, MLP)
- MLP= YE3F, 5L O] e 2HE, =852 2 74
- 24350 —*—WHEM H|ﬁ34 =& X =40t 3*-15 TAZL s H

HIOIEMIE ng F0x5H= 24|
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) r
0 0 0 ) \\ / 125}
) /
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2 (Deep Neural Network)
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)l SEA

F AKX EFlabel) 7H2| XtO|E =X

= Al

Alx= o O| ol S
MNE MAYDNN)Q Es 1
. N5 HATONNS BETY 29
- oE MEUo S5 2 Ofefef 22 B 6THA = O|F O A Y
« 67IX|Q| A E AKX LIH O|F 2t 0=
2o SotA[E HE HAE 2[0|
[1THA|] = o} (Forward Propagation) : & 2 H|O|E & 20t 71& X[ 2f
[2EtA] E3F X 2| (Output Layer) : &4 (2|, O|Z/CHE &7
[3THA] =4 A4 (Loss Calculation) : 0| S 4td
[4THA|] ST} (Backpropagation) : &2 4 7| T2 2 21 713 X7 L0tLt £40]
off AlLtet,
[STHA] 712 7| A4 S AAL S 4 (Gradient Calculation & Descent) : Al4t=l O|24f2 7|82
ofEHTZ O o= YN0 ELX| AT
[6TFAl] =E|OFO| X & (Optimizer Update) : S|

StgElt /s’ 28= SOl oterilH

=
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= 1Al =85 (Forward Propagation)
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= 2EHAl) 28F XN 2| (Output Layer)
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= [3EHA|] =4 A4t (Loss Calculation)
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Kt Al E 2 I|(Cross Entropy) A&
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[4EH7] SE|OFO| X (Optimizer)

+ SE[OO|XN &= Ti2t0|HE 284 0[1 HFEH o = AL0|E(E2 s Eaho
2

|et =E[OHO] X 2] 7] =

- O 1
« BAl ot4 & (Gradient Decent)= =4H = Z|A3}517|
FA

9| 7|27[& AlLholl O Bt e 2 mtetdly =8,

T

S
° BT

FF

[ ]
1=

o
O 22 Htako 2 0| =5tH X[ A4 (local minimum)Oi| =& 2.

7t
HA
& (learning rate)= H2t2F ZHO|| AL &,

-

]
¢ =

Al
E
H

L
2
H

A B4 | O CHBE 4= R we) 7187
OfF 7H=] l

Wnew = Woiga — 1
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5Wum

jolEE 71E%|
25 E(Learning Rate)
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= [4THA|] = E[OFO| X (Optimizer) H|

« 7|2 BAOLEE S 71010 ot Sep 8 g ds SIAE.

NAG
DE XHRE CHESA S 2I2) Croo| Serst xjxo| 7|2 7|2 T s
= =22 —/1= IE Dlal
712718 AL HES 3 AT ] RSt S0 2 0jS Nadam
GD Adamoiixf 3t 944 712712 of
F Momentum a8 o Betepl £
&/ omdolsus(ps)g Yy e
17 7\ ofstod, $Hxf Aol 1 Bt of
LA ety
SGD —
~_ Y4, =" S — Adam
pexEEASsKOnASxE . U " RMISPIOP
OF JEX| 2 iKY QJX|2] 7127 |2 At - "y 7 A2 g RN B EE T RMSProp + Momentum
s WEE S 7|8710| W EAS IS DR8] S

22 AlZIol o 401 2 4 IS

Adagard
718717k Rt 2 ol Lo o
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goz 3 2
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A= MALONNC Bt B

= [4THA|] SE|OFO| X (Optimizer) H| 1
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HETONN)L| o= b8

HMot= EHZ M AL &4 Z 7| FECE QXE ARE MItsh= 1HY.
FS X7 =0 HotL 7| =K 7| S 7| = ALt
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2} g~ (Activation Function)
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- Sigmoid: 0~1 HEY 2 =

- Tanh: -1~1 8H¥|. =5 40| 00f 7}77} 2.

- ReLU: 24 S0[AM 7t E2| A+ E.

u[n
o0
1ol

= 22

CtA
- d

- Leaky ReLU, ELU: ReLU2

ELU

Lo

0.5
0.0
—0.5 4

Leaky Rell

ReLL

L5
La

0.5 4
0.0

—0.5 4

Tanh

L5
Ldq

05 4

0.5 4
009

Sigmaoid

L5
1Ldq

00—

0.5 4
—0.5 1
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